Это интересно

Электродвигатель — чудо техники XIX века

О.БУЛАНОВА

Величайшим техническим достижением конца XIX в. стало изобретение промышленного электродвигателя. Этот компактный, экономичный, удобный мотор вскоре сделался одним из важнейших элементов производства, вытеснив другие виды двигателей отовсюду, куда только можно было доставить электрический ток.

Большими недостатками прежней паровой машины всегда оставались низкий КПД, а также трудность передачи и «дробления» полученной от нее энергии. Обычно одна большая машина обслуживала несколько десятков станков. Движение от нее подводилось к каждому рабочему месту механическим путем с помощью шкивов и бесконечных ремней. При этом происходили огромные неоправданные потери энергии.

Электропривод не имел этих изъянов: он обладал высоким КПД, поскольку с его вала можно было прямо получать вращательное движение (тогда как в паровом двигателе его преобразовывали из возвратно- поступательного), да и «дробить» электрическую энергию было намного проще.

Потери при этом оказывались минимальными, а производительность труда возрастала. Кроме того, с внедрением электромоторов впервые появилась возможность не только снабдить любой станок своим собственным двигателем, но и поставить отдельный привод на каждый его узел.

Электрические двигатели появились еще во второй четверти XIX в., но прошло несколько десятилетий, прежде чем создались благоприятные условия для их повсеместного внедрения в производство.

Один из первых совершенных электродвигателей, работавших от батареи постоянного тока, создал в 1834 г. русский электротехник Борис Семенович Якоби. Для своего времени он был самым совершенным электротехническим устройством. В том же году подробное сообщение о принципах его работы было представлено Парижской академии наук.

В 1838 г. Якоби усовершенствовал свой электромотор и, установив его на гребном боте, с десятью спутниками совершил небольшое плавание по Неве со скоростью 4,5 км/ч. Источником тока ему служила мощная батарея гальванических элементов. Понятно, впрочем, что все эти опыты имели чисто демонстрационный характер — до тех пор, пока не был изобретен и внедрен в производство совершенный электрический генератор, электродвигатели не могли найти широкого применения, т.к. питать их от батареи было слишком дорого и невыгодно.

Кроме того, в силу разных причин двигатели постоянного тока получили лишь ограниченное применение. Гораздо более важную роль играют в производстве электромоторы, работающие на переменном токе.

Сила и направление переменного тока, как многие помнят из школьного курса физики, не являются постоянными. Сила его сначала возрастает от нуля до какой-то максимальной величины и вновь убывает до нуля, затем ток меняет свое направление, возрастает до какого-то отрицательного максимума и вновь убывает до нуля. Время, за которое величина тока меняется от одного положительного максимума до другого, называют периодом колебания тока.

Этот процесс повторяется с большой частотой. Например, в осветительной сети ток в 1 секунду течет 50 раз в одну сторону и 50 раз в противоположную. Как такое поведение тока будет отражаться на работе электродвигателя? Прежде всего надо отметить, что направление вращения электродвигателя не зависит от направления тока, потому что при перемене тока изменится полярность не только в якоре, но одновременно в обмотках, отчего притяжение и отталкивание продолжают действовать в ту же сторону, что и раньше.

Из этого как будто бы должно следовать, что для двигателя совершенно безразлично, каким током — постоянным или переменным — он питается. Однако это не так. При частом перемагничивании электромагнитов (несколько десятков раз в секунду) в них возникают вихревые токи, которые замедляют вращение якоря и сильно разогревают его.

Мощность электромотора резко снижается, и в конце концов он выходит из строя. Для переменного тока необходима особая конструкция двигателя. Изобретатели не сразу смогли найти ее. Прежде всего была разработана модель т.н. синхронного двигателя переменного тока. Один из первых таких двигателей построил в 1841 г. Чарльз Уитстон.

Принцип, по которому он работал, обладал большими недостатками: кроме того, что синхронный двигатель требовал для своего запуска дополнительный разгонный двигатель, он имел и другой изъян — при перегрузке синхронность его хода нарушалась, магниты начинали тормозить вращение вала, и двигатель останавливался, поэтому синхронные двигатели не получили широкого распространения. Подлинная революция в электротехнике произошла только после изобретения асинхронного (или индукционного) двигателя.

В 1824 г. известный французский физик Доминик Франсуа Жан Арго провел специальную демонстрацию, из которой даже самому неискушенному в физике обывателю становилось более-менее понятно, как работает такой тип двигателя.

В принципе, асинхронный двигатель в основных чертах соответствовал двигателю Бейли, изобретенному позже — в 1879 г. Идея подобного двигателя чрезвычайно интересна, т.к. в отличие от двигателей постоянного тока или синхронных электромоторов, здесь не надо подводить ток к ротору. Однако в той форме, в которой его создал Бейли, асинхронный двигатель еще не мог иметь применения: переключение электромагнитов в нем происходило под действием сложного коллектора, и, кроме того, он имел очень низкий КПД.

Но до того, чтобы этот тип электрического мотора получил право на жизнь, оставался только шаг, и он был сделан после появления техники многофазных токов. Собственно, многофазные токи и получили применение прежде всего благодаря электродвигателям. Чтобы понять, что такое, к примеру, двухфазный ток, представим себе два независимых друг от друга проводника, в которых протекают два совершенно одинаковых переменных тока.

Единственная разница между ними заключается в том, что они не одновременно достигают своих максимумов. Про такие токи говорят, что они сдвинуты друг относительно друга по фазе, а если эти токи подводятся к одному электроприбору, говорят, что тот питается двухфазным током. Соответственно, может быть трехфазный ток (если питание прибора происходит от трех одинаковых токов, сдвинутых друг относительно друга по фазе), четырехфазный ток и т.д.

Долгое время в технике использовался только обычный переменный ток (который по аналогии с многофазными токами стали называть однофазным). Но потом оказалось, что многофазные токи в некоторых случаях гораздо удобнее однофазного.

В 1888 г. итальянский физик Галилео Феррарис и работавший в США югославский изобретатель Никола Тесла открыли явление вращающегося электромагнитного поля. На его основе Тесла сконструировал первый в истории двухфазный асинхронный двигатель. Он вообще был первым, кто стал экспериментировать с многофазными токами и успешно разрешил проблему генерирования таких токов.

Поскольку получить двухфазный ток из однофазного было непросто, Тесла построил специальный генератор, дававший сразу два тока с разностью фаз в 90 градусов (т.е. с отставанием на четверть периода). В этом генераторе между полюсами магнита вращались две взаимно перпендикулярные катушки. В то время, когда витки одной катушки находились под полюсами и индуцирующийся в них ток был максимальным, витки другой катушки находились между полюсами (на нейтральной линии), и электродвижущая сила в них была равна нулю.

Следовательно, два тока, генерируемые в этих катушках, были тоже сдвинуты по фазе относительно друг друга на четверть периода. Аналогичным способом можно было получить трехфазный ток (используя три катушки под углом 60 градусов друг к другу), но Тесла считал наиболее экономичной двухфазную систему. В самом деле, многофазные системы тока требуют большого количества проводов.

Изобретение Теслы знаменовало собой начало новой эры в электротехнике и вызвало к себе живейший интерес во всем мире. Уже в июне 1888 г. фирма «Вестингауз Электрик Компани» купила у него за миллион долларов все патенты на двухфазную систему и предложила организовать на своих заводах выпуск асинхронных двигателей. Эти двигатели поступили в продажу в следующем году.

Они были гораздо лучше и надежнее всех существовавших до этого моделей, но не получили широкого распространения, т.к. оказались весьма неудачно сконструированы. Обмотка статора в них выполнялась в виде катушек, насаженных на выступающие полюса. Неудачной была и конструкция ротора в виде барабана с двумя взаимно перпендикулярными, замкнутыми на себя катушками. Все это заметно снижало качество двигателя как в момент пуска, так и в рабочем режиме.

Вскоре индукционный двигатель Теслы был значительно переработан и усовершенствован русским электротехником Михаилом Осиповичем Доливо- Добровольским. Исключенный в 1881 г. по политическим мотивам из Рижского политехнического института, Доливо-Добровольский уехал в Германию. Здесь он закончил Дармштадтское высшее техническое училище и с 1887 г. начал работу в крупной германской электротехнической фирме «АЭГ».

После того, как Доливо-Добровольский получил в 1889 г. патент на свой ротор, его устройство принципиально не менялось вплоть до настоящего времени. Вслед затем он стал думать над конструкцией статора неподвижной части двигателя. Конструкция Теслы казалась изобретателю нерациональной. Поскольку КПД электродвигателя напрямую зависит от того, насколько полно магнитное поле статора используется ротором, то, следовательно, чем больше магнитных линий статора замыкаются на воздух (т.е. не проходят через поверхность ротора), тем больше потери электрической энергии и тем меньше КПД.

Доливо-Добровольский решал эту проблему, проводя бессонные ночи над схемами многофазных цепей. На листах бумаги он набрасывал все новые и новые варианты. И, наконец, решение, совершенно неожиданное и гениальное по своей простоте, было найдено.

Свой первый трехфазный асинхронный двигатель Доливо-Добровольский построил зимой 1889 г. В качестве статора в нем был использован кольцевой якорь машины постоянного тока с 24-мя полузакрытыми пазами. Учитывая ошибки Николы Теслы, Доливо-Добровольский рассредоточил обмотки в пазах по всей окружности статора, что делало более благоприятным распределение магнитного поля.

Ротор был цилиндрическим с обмотками «в виде беличьей клетки». Воздушный зазор между ротором и статором составлял всего 1 мм, что по тем временам было смелым решением, т.к. обычно зазор делали больше. Стержни «беличьей клетки» не имели никакой изоляции. В качестве источника трехфазного тока был использован стандартный генератор постоянного тока, перестроенный в трехфазный генератор.

Впечатление, произведенное первым запуском двигателя на руководство фирмы «АЭГ», было огромным. Для многих стало очевидно, что долгий тернистый путь создания промышленного электродвигателя наконец пройден до конца.

По своим техническим показателям двигатели Михаила Доливо-Добровольского превосходили все существовавшие тогда электромоторы — обладая очень высоким КПД, они безотказно работали в любых режимах, были надежны и просты в обращении, поэтому они сразу получили широкое распространение по всему миру. С этого времени начались быстрое внедрение электрических двигателей во все сферы производства и повсеместная электрификация промышленности.

По материалам сайта istoriz.ru